Informationen på denna sida är sammanställd från offentliga källor och gjord lättläst, men den representerar inte Coinmotions syn på tillgången i fråga. Innehållet på denna sida är avsett som informativt, inte som investeringsrådgivning. Bekanta dig alltid mer ingående med tillgången självständigt eller diskutera med en expert innan du fattar investeringsbeslut!

Ethereum Name Service
ENS
Ethereum Name Service (ENS) är ett decentraliserat namntjänstsystem som kopplar samman lättminnesvärda namn med Ethereum-adresser. Det gör att användare kan använda enkla domännamn istället för långa plånboksadresser.
Kurs*: ...
Förändring (24H)*: ...
Marknadsvärde*: 544939657.21978
Lansering: 2017
Nätverk: Ethereum
Protokoll: PoS

* Ej realtidsdata.

* Denna beskrivning av kryptotillgången har inte godkänts av någon behörig myndighet inom EU. Utgivaren av kryptotillgången är ensam ansvarig för innehållet i denna beskrivning av kryptotillgången.

Bakgrundshistoria

Ethereum Name Service (ENS) grundades i oktober 2017, som en del av Ethereum Foundations strävan att förbättra användbarheten av decentraliserade applikationer. Idén bakom ENS föddes ur behovet att omvandla komplexa Ethereum-adresser till kortare och lättminnesvärda namn – precis som domäner fungerar på internet. Tjänstens namn och logotyp har inspirerats av denna användarvänlighet, och de påminner om det internationellt erkända DNS-systemet.

Exempel

ENS används särskilt inom världen av decentraliserade applikationer och plånböcker. Privatpersoner och företag kan använda det för att skapa egna namn och koppla dem till olika resurser, såsom Ethereum-plånböcker eller decentraliserade webbplatser. Till exempel, istället för att skriva en lång Ethereum-adress kan du helt enkelt ge mottagaren ditt ENS-namn, som “mittNamn.eth”.

Roliga fakta

En rolig fakta om ENS är dess snabbt växande popularitet. När tjänsten lanserades reserverade många tidiga användare intressanta och populära namn – till och med bara av spekulationsskäl. Detta ledde till att vissa domäner såldes senare till höga priser. ENS har direkt vuxit till att bli en av de mest kända applikationerna på Ethereum-nätverket.

Höjdpunkter från communityn

ENS-gemenskapen är verkligen aktiv och fokuserar ständigt på att utveckla och förbättra nya innovationer. De är aktivt involverade i diskussioner på sociala medier, såsom Twitter och GitHub. ENS Foundation uppmuntrar gemenskapsmedlemmar att delta i öppen utveckling och ger dem verktyg för att skapa intressanta projekt och förbättringar.

Vad för ENS unikt?

Vad som gör ENS speciellt är dess förmåga att koppla samman blockchain-nätverk med det traditionella internet på ett enkelt och användarvänligt sätt. ENS skiljer sig från sina konkurrenter genom att det fungerar inom Ethereum-nätverkets infrastruktur, vilket ger extra säkerhet och tillförlitlighet. Denna exceptionella kopplingsförmåga skapar nya möjligheter för utvecklingen av ett decentraliserat internet.

Framtidsvision

ENS:s framtidsvision är att bygga en bro mellan det traditionella och det decentraliserade internet. De planerar att införa fler funktioner, såsom stöd för multiloggnamn och integration med andra blockkedjor, vilket öppnar nya möjligheter för utvecklare och användare. ENS strävar efter att vara en central aktör i framtidens decentraliserade nät, där allt fler aspekter av det digitala livet är lättillgängliga och säkra att använda.
ESG Disclosure +

Energiförbrukning: 585.53876 kWh/a | Förnybar energi:

ESG (Environmental, Social, and Governance) regulations for crypto assets aim to address their environmental impact (e.g., energy-intensive mining), promote transparency, and ensure ethical governance practices to align the crypto industry with broader sustainability and societal goals. These regulations encourage compliance with standards that mitigate risks and foster trust in digital assets.

Name Coinmotion Oy
Relevant legal entity identifier 743700PZG5RRF7SA4Q58
Name of the crypto-asset Ethereum Name Service
Consensus Mechanism Ethereum Name Service is present on the following networks: Ethereum, Solana. The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity. The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency. Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security. Here’s a detailed explanation of how these mechanisms work: Core Concepts 1. Proof of History (PoH): Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time. Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions. 2. Proof of Stake (PoS): Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks. Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security. Consensus Process 1. Transaction Validation: Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network’s criteria, such as having correct signatures and sufficient funds. 2. PoH Sequence Generation: A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network. 3. Block Production: The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order. 4. Consensus and Finalization: Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized. Security and Economic Incentives 1. Incentives for Validators: Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator’s stake and performance. Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently. 2. Security: Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens. Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators. 3. Economic Penalties: Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.
Incentive Mechanisms and Applicable Fees Ethereum Name Service is present on the following networks: Ethereum, Solana. The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees. Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity. This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity. Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions. Here’s a detailed explanation of the incentive mechanisms and applicable fees: Incentive Mechanisms 4. Validators: Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks. Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity. 5. Delegators: Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization. 6. Economic Security: Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network. Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 7. Transaction Fees: Low and Predictable Fees: Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum. Fee Structure: Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth. 8. Rent Fees: State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network. 9. Smart Contract Fees: Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.
Beginning of the period 2024-06-09
End of the period 2025-06-09
Energy consumption 585.53876 (kWh/a)
Energy consumption resources and methodologies The energy consumption of this asset is aggregated across multiple components: To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation.
Renewable energy consumption
Energy intensity (kWh)
Scope 1 DLT GHG emissions - Controlled (tCO2e/a)
Scope 2 DLT GHG emissions - Purchased (tCO2e/a)
GHG intensity (kgCO2e)
Key energy sources and methodologies
Key GHG sources and methodologies

Share on

Facebook
Twitter
LinkedIn
Telegram
WhatsApp

Prenumerera på Coinmotions nyhetsbrev

Vill du vara den första att höra om våra produktuppdateringar, få superduper-speciella erbjudanden och lära dig mer om kryptovalutor genom våra exklusiva marknadsrapporter? Vi skickar gärna ett e-postmeddelande då och då – inte för ofta – så vänligen fyll i dina uppgifter nedan. Låt oss hålla kontakten!
Är du redan en Coinmotion-användare? Du kan även hantera din prenumeration via kontoinställningarna.

Prenumerera nu genom att fylla i dina uppgifter här

Ansvarig för filen: Coinmotion Oy. Syfte: att skicka information om egna produkter och tjänster till undertecknad. Legitimering: samtycke. Mottagare: Data kommer inte att kommuniceras till tredje parter. Rättigheter: få tillgång till, korrigera och radera data, samt andra rättigheter, som förklaras i tilläggsinformationen. Du kan läsa ytterligare och detaljerad information i vår integritetspolicy