Informationen på denna sida är sammanställd från offentliga källor och gjord lättläst, men den representerar inte Coinmotions syn på tillgången i fråga. Innehållet på denna sida är avsett som informativt, inte som investeringsrådgivning. Bekanta dig alltid mer ingående med tillgången självständigt eller diskutera med en expert innan du fattar investeringsbeslut!

Kaspa
KAS
Kaspa (KAS) är ett blockchain-projekt som fokuserar på snabb och säker genomförande av transaktioner utan centrala mellanhänder. En exceptionell egenskap hos Kaspa är dess utvecklade GHOSTDAG-protokoll, som möjliggör mycket snabb transaktionshantering.
Kurs*: ...
Förändring (24H)*: ...
Marknadsvärde*: 1189406506.2173
Lansering: 2021
Nätverk: Kaspa Chain
Protokoll: GHOSTDAG

* Ej realtidsdata.

* Denna beskrivning av kryptotillgången har inte godkänts av någon behörig myndighet inom EU. Utgivaren av kryptotillgången är ensam ansvarig för innehållet i denna beskrivning av kryptotillgången.

Bakgrundshistoria

KAS-myntet skapades i syfte att lösa skalbarhetsutmaningar hos traditionella blockkedjor. Projektet startade 2020, när dess grundare insåg hur den växande användningen av blockkedjor krävde nya och effektivare lösningar. Namnet KAS är en förkortning av “Kaspa”, som hänvisar till myntets grundvalar och dess utvecklares skapelser.

Exempel

I verkliga världen används KAS särskilt för mikropayments och snabba transaktioner som kräver låg latens och låga avgifter. Vissa startup-företag har testat dess användning i mikroeconomier där hastighet och kostnadseffektivitet är avgörande. Detta gör KAS till ett attraktivt alternativ för dagliga affärstransaktioner.

Roliga fakta

En av KAS:s intressanta fakta är dess innovativa “GHOSTDAG”-protokoll, som möjliggör samtidig mining av flera block utan att nätverket saktas ner. Detta har varit ett betydande framsteg inom blockkedjevärlden och gör det unikt jämfört med andra mynt. Dessutom har KAS genomgått en snabb tillväxtfas, vilket överträffar många ursprungliga förväntningar.

Höjdpunkter från communityn

KAS-gemenskapen är mycket aktiv och deltar aktivt i projektets utveckling. Gemenskapsprojektet “KAS-hackathon” har fått deltagare från hela världen för att utveckla nya applikationer för myntets användning. På sociala medier har KAS-gemenskapen en livlig diskussionskultur där idéer delas och projektets synlighet främjas.

Vad för KAS unikt?

KAS:s särskiljande drag är dess höga skalbarhet och snabba transaktionstid. Tack vare GHOSTDAG-protokollet kan den effektivt hantera ett stort antal transaktioner, vilket skiljer den från många andra kryptovalutor. Detta gör KAS särskilt attraktivt för företag som behöver snabba och pålitliga betalningstransaktioner.

Framtidsvision

I framtiden planerar KAS-teamet att utveckla kompatibilitet med andra blockkedjor och lansera nya funktioner som ytterligare förbättrar användarupplevelsen. Projektets mål är att bli ett centralt betalningsmedel i stor skala och uppnå global acceptans. KAS:s potentiella påverkan i framtiden kan förändra hur vi hanterar transaktioner och ser på blockkedjeteknologins möjligheter.
ESG Disclosure +

Energiförbrukning: 2831162818.95504 kWh/a | Förnybar energi: 24.134702976

ESG (Environmental, Social, and Governance) regulations for crypto assets aim to address their environmental impact (e.g., energy-intensive mining), promote transparency, and ensure ethical governance practices to align the crypto industry with broader sustainability and societal goals. These regulations encourage compliance with standards that mitigate risks and foster trust in digital assets.

Name Coinmotion Oy
Relevant legal entity identifier 743700PZG5RRF7SA4Q58
Name of the crypto-asset Kaspa
Consensus Mechanism The Kaspa blockchain uses a unique Proof-of-Work consensus mechanism called the GHOSTDAG (Greedy Heaviest Observed Subtree Directed Acyclic Graph) protocol. GHOSTDAG is designed to offer high throughput, low latency, and secure finality, addressing scalability and performance challenges typically faced by traditional blockchain systems. Key Features of Kaspa's Consensus Mechanism: 1. Directed Acyclic Graph (DAG) Structure: Kaspa operates on a DAG, allowing multiple blocks to be produced simultaneously and linked together in a way that eliminates the need for a single linear chain. This allows for parallel block production, significantly increasing the overall throughput of the network. Unlike traditional blockchains where only the longest chain is considered valid, Kaspa allows blocks to coexist, increasing transaction throughput and scalability. 2. GHOSTDAG Protocol: The GHOSTDAG protocol resolves the challenges that arise in DAG-based networks by ensuring a consistent ordering of blocks. It uses the concept of "growing" blocks from the heaviest observed subtree, meaning that new blocks are integrated into the DAG in a way that prioritizes the most secure and valid branches. This mechanism allows Kaspa to maintain finality and avoid forks while increasing the overall throughput of the system. 3. High Throughput and Low Latency: Kaspa's GHOSTDAG protocol enables high-speed block confirmation without sacrificing security, processing thousands of transactions per second with low latency. 4. Proof of Work (PoW): Kaspa utilizes Proof of Work (PoW) for block validation, where miners must solve cryptographic puzzles to add new blocks to the DAG. This ensures the integrity and security of the network while making the mining process decentralized and permissionless. The PoW ensures that no single miner or group can control the network, contributing to the decentralized nature of Kaspa. 5. Simultaneous Block Creation: In Kaspa, blocks are created in parallel by miners, and their validity is determined by the consensus protocol (GHOSTDAG), allowing for high scalability and fast block times (approximately one block every second). 6. Block Finality: Once a block is added to the DAG and supported by a sufficient number of subsequent blocks, it achieves finality, meaning it cannot be reverted or reorganized.
Incentive Mechanisms and Applicable Fees Kaspa employs a Proof-of-Work (PoW) consensus mechanism to secure its network and incentivize participants. Miners validate transactions and add new blocks to the DAG (Directed Acyclic Graph) structure, earning rewards for their efforts. Incentive Mechanism: 1. Mining Rewards: Block Rewards: Miners receive newly minted KAS tokens as rewards for successfully mining new blocks. The block reward decreases over time, following a predetermined schedule, to control the total supply of KAS tokens. Transaction Fees: In addition to block rewards, miners earn transaction fees from the transactions included in the blocks they mine. Users pay these fees to incentivize miners to prioritize their transactions. 2. Transaction Fees: Users pay transaction fees to have their transactions processed and included in the blockchain. These fees are determined by the size of the transaction and the current network conditions. Higher fees can expedite transaction inclusion, especially during periods of high network activity. Applicable Fees: 1. Transaction Fees: Transaction fees are calculated based on the size of the transaction, measured in bytes. The fee rate is dynamic and adjusts according to network congestion and demand. Users can estimate appropriate fee rates using tools like the Rusty Kaspa node's getFeeEstimate() RPC method, which provides real-time fee rate suggestions based on current network conditions. 2. Fee Rate and Quality of Service (QoS): The fee rate influences the priority of transactions. A higher fee rate increases the likelihood of a transaction being included in the next block, ensuring faster confirmation times. Kaspa's fee structure allows users to adjust their fee rates to balance cost and transaction speed according to their preferences.
Beginning of the period 2024-06-09
End of the period 2025-06-09
Energy consumption 2831162818.95504 (kWh/a)
Energy consumption resources and methodologies For the calculation of energy consumptions, the so called “top-down” approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: KHeavyhash. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
Renewable energy consumption 24.134702976
Energy intensity 3.52573 (kWh)
Scope 1 DLT GHG emissions - Controlled 0.00000 (tCO2e/a)
Scope 2 DLT GHG emissions - Purchased 1166427.93040 (tCO2e/a)
GHG intensity 1.45259 (kgCO2e)
Key energy sources and methodologies To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Share of electricity generated by renewables – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables
Key GHG sources and methodologies To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Carbon intensity of electricity generation – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0

Share on

Facebook
Twitter
LinkedIn
Telegram
WhatsApp

Prenumerera på Coinmotions nyhetsbrev

Vill du vara den första att höra om våra produktuppdateringar, få superduper-speciella erbjudanden och lära dig mer om kryptovalutor genom våra exklusiva marknadsrapporter? Vi skickar gärna ett e-postmeddelande då och då – inte för ofta – så vänligen fyll i dina uppgifter nedan. Låt oss hålla kontakten!
Är du redan en Coinmotion-användare? Du kan även hantera din prenumeration via kontoinställningarna.

Prenumerera nu genom att fylla i dina uppgifter här

Ansvarig för filen: Coinmotion Oy. Syfte: att skicka information om egna produkter och tjänster till undertecknad. Legitimering: samtycke. Mottagare: Data kommer inte att kommuniceras till tredje parter. Rättigheter: få tillgång till, korrigera och radera data, samt andra rättigheter, som förklaras i tilläggsinformationen. Du kan läsa ytterligare och detaljerad information i vår integritetspolicy