Tällä sivulla oleva tieto on koottu julkisista lähteistä ja tehty helppolukuiseksi, mutta se ei edusta Coinmotionin näkemystä kyseisestä omaisuuserästä. Tämän sivun sisältö on tarkoitettu informatiiviseksi, ei sijoitusneuvonnaksi. Tutustu aina omaisuuserään tarkemmin itsenäisesti tai keskustele asiantuntijan kanssa ennen sijoituspäätösten tekemistä!

dogwifhat
WIF
Dogwifhat on leikkisä kryptovaluutta, joka keskittyy yhteisön voimaan ja hauskaan tekemiseen kryptomaailmassa.
Kurssi*: ...
Muutos (24H)*: ...
Market Cap*: 0
Julkaisuvuosi: 2023
Verkko:
Protokolla:

* Ei reaaliaikaiset tiedot.

* Mikään Euroopan unionin jäsenvaltion toimivaltainen viranomainen ei ole hyväksynyt tätä kryptovaran kuvausta. Kryptovaran tarjoaja on yksin vastuussa tämän kryptovaran kuvauksen sisällöstä.

Alkutarina

Dogecoinin tarina alkaa vuoden 2013 lopulla, kun Billy Markus ja Jackson Palmer loivat kolikon vitsinä kryptovaluuttaskenelle. Alun perin hauskaa koirameemiä (Shiba Inu -koirarotu) hyödyntävä “doge” toimi inspiraationa nimen ja logon takana. Dogecoinin tarkoitus oli tuoda pientä keveyttä ja huumoria muuten vakavaan kryptomaailmaan.

Esimerkkejä tosielämästä

Dogecoin on vuodesta toiseen löytänyt itsensä yllättävässä käytössä. Yksi tunnetuimmista esimerkeistä on sen käyttäminen tippaamiseen verkossa, koska sen transaktiomaksut ovat edullisia ja se toimii nopeasti. Lisäksi Dogecoinia on käytetty erilaisten hyväntekeväisyyskampanjoiden rahoittamiseen, kuten Jamaikan kelkkajoukkueen tukemiseen matkalla olympialaisiin.

Hauskoja faktoja

Jos et tiennyt, Dogecoinilla on oma päivittäinen tapahtumansa: “Doge Day”, joka juhlistaa krypton syntyä 20. huhtikuuta. Dogecoinin yhteisö on tunnettu vahvasta läsnäolostaan sosiaalisessa mediassa, erityisesti Redditissä, eikä pidä unohtaa multimiljardööri Elon Muskin ajoittain kryptoa yltyviä twiittejä, jotka ovat nostaneet Dogecoinin arvoa ja näkyvyyttä nopeasti.

Yhteisön kohokohdat

Dogecoin-yhteisö on yksi kryptomaailman aktiivisemmista. Sen jäsenet ovat toteuttaneet lukuisia projekteja, kuten hyväntekeväisyyskampanjoita, ja osallistuvat aktiivisesti keskusteluun sosiaalisessa mediassa. Reddit on erityinen koti Dogecoin-faneille, ja se toimii paikkana, jossa idea vaihdetaan ja yhteistä intohimoa jaetaan.

Mikä tekee WIF erityisen?

Dogecoin erottuu muista kryptovaluutoista juuri käyttäjäystävällisyytensä ja huumorinsa ansiosta. Se ei ota itseään liian vakavasti, mikä tekee siitä helposti lähestyttävän myös aloitteleville kryptoharrastajille. Lisäksi suhteellisen nopean transaktioajan ja matalien maksujen ansiosta Dogecoin on usein valinta pieniin verkkomaksuihin.

Tulevaisuuden visio

Tulevaisuudessa Dogecoin-yhteisö toivoo kolikon teknologian kehittyvän edelleen ja sen käyttökohteiden monipuolistuvan. Vaikka alun perin vitsinä luotu, Dogecoin on kehittynyt vakiintuneeksi osaksi kryptomarkkinoita ja sen tulevat suuntaviivat saattavat tuoda mielenkiintoisia mahdollisuuksia sekä kryptoskenelle että laajemmalle yleisölle.
"
ESG Disclosure +

Energiankulutus: 267.55163 kWh/a | Uusiutuva energia: 32.795646896

ESG (Environmental, Social, and Governance) regulations for crypto assets aim to address their environmental impact (e.g., energy-intensive mining), promote transparency, and ensure ethical governance practices to align the crypto industry with broader sustainability and societal goals. These regulations encourage compliance with standards that mitigate risks and foster trust in digital assets.

Name Coinmotion Oy
Relevant legal entity identifier 743700PZG5RRF7SA4Q58
Name of the crypto-asset dogwifhat
Consensus Mechanism Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security. Here’s a detailed explanation of how these mechanisms work: Core Concepts 1. Proof of History (PoH): Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time. Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions. 2. Proof of Stake (PoS): Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks. Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security. Consensus Process 1. Transaction Validation: Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network’s criteria, such as having correct signatures and sufficient funds. 2. PoH Sequence Generation: A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network. 3. Block Production: The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order. 4. Consensus and Finalization: Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized. Security and Economic Incentives 1. Incentives for Validators: Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator’s stake and performance. Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently. 2. Security: Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens. Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators. 3. Economic Penalties: Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.
Incentive Mechanisms and Applicable Fees Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions. Here’s a detailed explanation of the incentive mechanisms and applicable fees: Incentive Mechanisms 4. Validators: Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks. Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity. 5. Delegators: Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization. 6. Economic Security: Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network. Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 7. Transaction Fees: Low and Predictable Fees: Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum. Fee Structure: Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth. 8. Rent Fees: State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network. 9. Smart Contract Fees: Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.
Beginning of the period 2024-10-04
End of the period 2025-10-04
Energy consumption 267.55163 (kWh/a)
Energy consumption resources and methodologies The energy consumption of this asset is aggregated across multiple components: To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
Renewable energy consumption 32.795646896
Energy intensity 0.00000 (kWh)
Scope 1 DLT GHG emissions - Controlled 0.00000 (tCO2e/a)
Scope 2 DLT GHG emissions - Purchased 0.09066 (tCO2e/a)
GHG intensity 0.00000 (kgCO2e)
Key energy sources and methodologies To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.
Key GHG sources and methodologies To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
.cm-esg-accordion-container { font-family: ""SF Pro Text"", ""Segoe UI"", -apple-system, BlinkMacSystemFont, Roboto, Oxygen, Ubuntu, Cantarell, sans-serif; max-width: 100%; margin: 20px 0; border-radius: 8px; overflow: hidden; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); background-color: #ffffff; } .cm-esg-accordion-item { border: 1px solid #e6e9ec; } .cm-esg-accordion-header { padding: 15px 20px; display: flex; justify-content: space-between; align-items: center; background-color: #f5f7fa; cursor: pointer; user-select: none; border-bottom: 1px solid #e6e9ec; } .cm-esg-trigger { font-size: 16px; font-weight: 600; color: #0090d8; flex-grow: 1; } .cm-pdf-button { background-color: #0090d8; color: white; border: none; border-radius: 20px; padding: 6px 15px; font-size: 14px; font-weight: 500; cursor: pointer; margin-right: 15px; transition: background-color 0.2s; } .cm-pdf-button:hover { background-color: #0076b3; } .cm-esg-icon { font-size: 20px; color: #0090d8; transition: transform 0.3s ease; width: 20px; text-align: center; } .cm-esg-accordion-preview { padding: 12px 20px; background-color: #f0f8ff; border-bottom: 1px solid #e6e9ec; font-size: 14px; color: #4a5568; } .cm-esg-accordion-body { max-height: 0; overflow: hidden; transition: max-height 0.4s ease; } .cm-esg-accordion-item.active .cm-esg-accordion-body { max-height: 10000px; } .cm-esg-accordion-item.active .cm-esg-icon { transform: rotate(45deg); } .cm-esg-content { padding: 20px; } .cm-esg-intro { margin-bottom: 24px; line-height: 1.6; color: #4a5568; font-size: 14px; } .cm-esg-table-container { overflow-x: auto; } .cm-esg-table { width: 100%; border-collapse: collapse; font-size: 14px; } .cm-esg-table td { padding: 12px 16px; border-bottom: 1px solid #e6e9ec; vertical-align: top; line-height: 1.5; } .cm-esg-table tr td:first-child { width: 30%; min-width: 220px; font-weight: 600; color: #2d3748; background-color: #f8fafc; } .cm-esg-highlight td { background-color: #e6f7ff !important; } @media (max-width: 768px) { .cm-esg-table td { padding: 10px; } .cm-esg-table tr td:first-child { min-width: 180px; } .cm-esg-accordion-header { padding: 12px 15px; } .cm-pdf-button { padding: 5px 10px; font-size: 12px; } } document.addEventListener('DOMContentLoaded', function() { const accordionItems = document.querySelectorAll('.cm-esg-accordion-item'); // Toggle accordion on header click accordionItems.forEach(item => { const header = item.querySelector('.cm-esg-accordion-header'); const pdfButton = item.querySelector('.cm-pdf-button'); header.addEventListener('click', function(e) { if (e.target !== pdfButton) { item.classList.toggle('active'); } }); // Handle PDF button click if (pdfButton) { pdfButton.addEventListener('click', function(e) { e.stopPropagation(); const pdfUrl = this.getAttribute('data-pdf-url'); if (pdfUrl) { window.open(pdfUrl, '_blank'); } }); } }); }); "

Share on

Facebook
Twitter
LinkedIn
Telegram
WhatsApp