Tällä sivulla oleva tieto on koottu julkisista lähteistä ja tehty helppolukuiseksi, mutta se ei edusta Coinmotionin näkemystä kyseisestä omaisuuserästä. Tämän sivun sisältö on tarkoitettu informatiiviseksi, ei sijoitusneuvonnaksi. Tutustu aina omaisuuserään tarkemmin itsenäisesti tai keskustele asiantuntijan kanssa ennen sijoituspäätösten tekemistä!

Plasma
XPL
Plasma on layer-1-lohkoketju, joka on kehitetty erityisesti stablecoin-maksuja varten – tavoitteena on tehdä digitaalisten dollareiden lähettämisestä ja vastaanottamisesta nopeaa, helppoa ja käytännössä ilmaista. Sen natiivi XPL-token on keskeinen osa verkon talous- ja turvallisuusmallia, mahdollistaen validatorien palkitsemisen ja verkon ylläpidon samalla, kun käyttäjät voivat nauttia esimerkiksi nollakustannuksista USDt-siirroissa.
Kurssi*: ...
Muutos (24H)*: ...
Market Cap*: 319727338.09193
Julkaisuvuosi: 2025
Verkko: Binance Smart Chain
Protokolla: PoS

* Ei reaaliaikaiset tiedot.

* Mikään Euroopan unionin jäsenvaltion toimivaltainen viranomainen ei ole hyväksynyt tätä kryptovaran kuvausta. Kryptovaran tarjoaja on yksin vastuussa tämän kryptovaran kuvauksen sisällöstä.

Alkutarina

Projekti syntyi tunnistamaan tarpeen aidosti stablecoineille suunnatusta infrastruktuurista, sillä yleiskäyttöiset lohkoketjut eivät usein pysty vastaamaan stablecoinien kasvaviin vaatimuksiin. Nimi “Plasma” viittaa mahdollisesti nopeatempoiseen, dynaamiseen ja likvidiin rahaliikenteeseen. Kehittäjät ammensivat inspiraatiota erityisesti digitaalisten dollarien kasvavasta merkityksestä maailmantaloudessa sekä halusta laajentaa internet-pohjaisten rahansiirtojen mahdollisuuksia.

Esimerkkejä tosielämästä

Monet hyödyntävät verkkoa jo nyt kansainvälisiin rahansiirtoihin, sillä USDt-siirrot onnistuvat ilman siirtokuluja. Plasma-alustalla toimii lisäksi neobank-sovellus, joka tuo digitaaliset dollarit helposti kaikkien saataville – esimerkiksi alueilla, joilla paikallinen valuutta on epävakaa. Stablecoinien suuri likviditeetti houkuttelee myös DeFi-alustoja ja muita finanssiteknologiaratkaisuja mukaan ekosysteemiä kehittämään.

Hauskoja faktoja

Hauskana yksityiskohtana Plasma käynnistyi massiivisesti, sillä stablecoin-likviditeetti oli jo 2 miljardia dollaria heti ensimmäisenä päivänä, ja TVL nousi nopeasti yli 5 miljardiin. Projekti on myös tuonut käyttäjille cashback-etuja, tuottomahdollisuuksia ja yhteistyötä tunnetuimpien DeFi-protokollien, kuten Aaven kanssa – mikä on harvinaista näin nuorelle lohkoketjulle.

Yhteisön kohokohdat

Yhteisö rakentaa aktiivisesti uusia sovelluksia Plasman päälle ja osallistuu mm. stakettamiseen sekä keskusteluun kehityksestä sosiaalisessa mediassa. Ekosysteemin kasvaessa valittavat myös tavalliset token-haltijat omat edustajansa verkon validoijiksi stakedeligoinnin avulla, mikä laajentaa osallistumismahdollisuuksia koko yhteisölle.

Mikä tekee XPL erityisen?

Plasma on uniikki, koska sen stablecoin-mekanismit on rakennettu protokollatasolle – esimerkiksi USDt-siirtomaksut kattaa paymaster-järjestelmä, jolloin käyttäjän ei tarvitse edes omistaa XPL-tokenia perussiirtoihin. Nopeus, pieni viive ja vahvat turvallisuusratkaisut, kuten PlasmaBFT-konsensus, erottavat sen perinteisemmistä yleiskäyttöisistä lohkoketjuista ja tekevät siitä houkuttelevan globaalien maksujen alustaksi.

Tulevaisuuden visio

Projekti tähtää kansainväliseksi maksujen “valtatieksi” ja rakentaa vaiheittain lisää ominaisuuksia, kuten luotettavan Bitcoin-sillan ja entistä yksityisemmät maksutavat. Visiona on kasvaa stablecoinin ensisijaiseksi alustaksi niin yrityksille kuin yksilöille, ja kehitystä tehdään tiiviissä yhteistyössä ekosysteemin ja kumppaneiden kanssa. Uudistuksia julkaistaan vaiheittain, mikä pitää yhteisön odotukset korkealla myös jatkossa.
ESG Disclosure +

Energiankulutus: 13455.75736 kWh/a | Uusiutuva energia: 33.150000000

ESG (Environmental, Social, and Governance) regulations for crypto assets aim to address their environmental impact (e.g., energy-intensive mining), promote transparency, and ensure ethical governance practices to align the crypto industry with broader sustainability and societal goals. These regulations encourage compliance with standards that mitigate risks and foster trust in digital assets.

Name Coinmotion Oy
Relevant legal entity identifier 743700PZG5RRF7SA4Q58
Name of the crypto-asset plasma
Consensus Mechanism plasma is present on the following networks: Binance Smart Chain, Plasma. Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security. Core Components 1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network’s security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security. 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security. 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network. 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB. 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network’s security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance. 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently. Plasma Chain uses PlasmaBFT, a consensus protocol based on Fast HotStuff with pipelined execution. Validators are selected through a simplified Proof-of-Stake mechanism and participate in block production and finalization. Misbehavior does not lead to full slashing of stake but results in reduced rewards.
Incentive Mechanisms and Applicable Fees plasma is present on the following networks: Binance Smart Chain, Plasma. Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators. Incentive Mechanisms 1. Validators: Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards. Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks. 2. Delegators: Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks. Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network’s security and decentralization by choosing reliable validators. 3. Candidates: Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience. 4. Economic Security: Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network. Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets. Fees on the Binance Smart Chain 5. Transaction Fees: Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators. Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet. 6. Block Rewards: Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions. 7. Cross-Chain Fees: Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience. 8. Smart Contract Fees: Deployment and Execution Costs: Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform. Validators receive a share of transaction fees and protocol rewards for signing blocks. If validators fail to participate correctly, their reward share is reduced. The protocol is designed to balance participation incentives while limiting financial penalties.
Beginning of the period 2024-11-02
End of the period 2025-11-02
Energy consumption 13455.75736 (kWh/a)
Energy consumption resources and methodologies The energy consumption of this asset is aggregated across multiple components: For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts. To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
Renewable energy consumption 33.150000000
Energy intensity 0.00000 (kWh)
Scope 1 DLT GHG emissions - Controlled 0.00000 (tCO2e/a)
Scope 2 DLT GHG emissions - Purchased 0.02261 (tCO2e/a)
GHG intensity 0.00000 (kgCO2e)
Key energy sources and methodologies To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.
Key GHG sources and methodologies To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Share on

Facebook
Twitter
LinkedIn
Telegram
WhatsApp