Tällä sivulla oleva tieto on koottu julkisista lähteistä ja tehty helppolukuiseksi, mutta se ei edusta Coinmotionin näkemystä kyseisestä omaisuuserästä. Tämän sivun sisältö on tarkoitettu informatiiviseksi, ei sijoitusneuvonnaksi. Tutustu aina omaisuuserään tarkemmin itsenäisesti tai keskustele asiantuntijan kanssa ennen sijoituspäätösten tekemistä!

XRP
XRP
XRP on kryptovaluutta, joka on kehitetty tarjoamaan nopeita ja edullisia kansainvälisiä rahansiirtoja. Sen taustalla on Ripple-verkko, joka pyrkii parantamaan maksujen tehokkuutta.
Kurssi*: ...
Muutos (24H)*: ...
Market Cap*: 124869717330.67
Julkaisuvuosi: 2012
Verkko: XRP Ledger
Protokolla: Ripple Protocol Consensus Algorithm (RPCA)

* Ei reaaliaikaiset tiedot.

* Mikään Euroopan unionin jäsenvaltion toimivaltainen viranomainen ei ole hyväksynyt tätä kryptovaran kuvausta. Kryptovaran tarjoaja on yksin vastuussa tämän kryptovaran kuvauksen sisällöstä.

Tekniset Tiedot

  • Confirmations required: 12
  • Network: Ripple
  • Consensus mechanism: Ripple Consensus Protocol
  • Description of required block confirmations for irreversibility: Utilizes consensus among validators; considered irreversible post-confirmation
  • Description of confirmations/time limit for probabilistic settlement: Consensus algorithm generally leads to rapid finality without classic confirmations
  • Description of special rules affecting irreversibility: Special consensus model reduces time to probable finality
  • Description of network limitations affecting irreversibility: Limited by validator consensus time, generally faster than others

Alkutarina

XRP:n tarina alkaa vuonna 2012, kun se lanseerattiin. Tämän kryptovaluutan lähtölaukauksesta vastasivat ohjelmoijat Jed McCaleb, Arthur Britto ja David Schwartz, jotka yhdessä perustivat Ripple Labs -nimisen yrityksen. XRP:n tavoitteena oli luoda yhteyksiä perinteisten rahoituslaitosten ja kryptomaailman välille, tarjoten nopeampia ja edullisempia rahansiirtoja yli rajojen. XRP on nimetty projektin lyhenteenä, mutta on myös tulkittu viittaavan “X Rapid Payment” tai yksinkertaisesti “X-asirajoitettu valuutta”.

Esimerkkejä tosielämästä

XRP:tä käytetään erityisesti pankkien ja rahoituslaitosten välisissä kansainvälisissä rahansiirroissa. Se on osoittanut kykynsä siirtää varoja nopeasti ja tehokkaasti ympäri maailmaa – vain muutamassa sekunnissa – mikä on merkittävä parannus perinteisiin pankkisiirtoihin verrattuna. Esimerkiksi suuria pankkeja, kuten Santander ja American Express, on käyttänyt Ripple-teknologiaa parantaakseen omia palveluitaan, mikä todistaa teknologian käytännöllisyyden.

Hauskoja faktoja

Yksi hauska fakta XRP:stä on, että se ei perustu louhintaan kuten monet muut kryptovaluutat. Tämä tekee transaktioista energiatehokkaampia. XRP Ledger pystyy käsittelemään noin 1500 tapahtumaa sekunnissa, mikä tekee siitä yhden nopeimmista lohkoketjuista markkinoilla. XRP saavutti merkittävän virstanpylvään, kun sen markkina-arvo nousi hetkellisesti Bitcoinin jälkeen toiseksi suurimmaksi kryptovaluutaksi vuonna 2018.

Yhteisön kohokohdat

XRP-yhteisö on aktiivinen ja laaja, ja se järjestää säännöllisesti tapahtumia ja verkostoitumistilaisuuksia ympäri maailmaa. Redditissä ja Twitterissä on vilkkaita keskusteluryhmiä, joissa yhteisön jäsenet jakavat uusimpia päivityksiä, analyysejä ja ideoita. XRP-fanit tunnetaan innostuksestaan ja ovat mukana erilaisissa projekteissa, jotka tukevat XRP-verkoston kasvua ja jakavat tietoa siitä alkuun pääsemisestä.

Mikä tekee XRP erityisen?

XRP erottuu edukseen monesta muusta kryptovaluutasta sen nopeuden ja skaalautuvuuden ansiosta. Se on suunniteltu toimimaan rahoituslaitosten välisten siirtojen tehostamiseksi, mikä tekee siitä hyvin erikoisen verrattuna esimerkiksi Bitcoinin kaltaisiin kryptovaluuttoihin. XRP:tä käyttää keskitetty Ripple Labs -yritys, mikä antaa sille erilaisen lähestymistavan ja toimintatavat moniin muihin kryptovaluuttoihin verrattuna.

Tulevaisuuden visio

XRP:n tulevaisuuden visio on muuttaa globaali rahansiirtoekosysteemi tehostetuksi ja saumattomaksi, jotta varat liikkuvat ympäri maailmaa nopeammin ja edullisemmin. Ripple Labs jatkaa yhteistyön rakentamista suurten pankkien ja fintech-yritysten kanssa, ja suunnitelmissa on laajentaa XRP:n käyttöä yhä useampiin rahoitussektoreihin. Tavoitteena on tehdä XRP:stä keskeinen osa maailmanlaajuista maksujärjestelmää ja samalla tuoda lisäarvoa perinteisiin rahansiirtoprosesseihin.
ESG Disclosure +

Energiankulutus: 299617.16938 kWh/a | Uusiutuva energia: 27.719941146

ESG (Environmental, Social, and Governance) regulations for crypto assets aim to address their environmental impact (e.g., energy-intensive mining), promote transparency, and ensure ethical governance practices to align the crypto industry with broader sustainability and societal goals. These regulations encourage compliance with standards that mitigate risks and foster trust in digital assets.

Name Coinmotion Oy
Relevant legal entity identifier 743700PZG5RRF7SA4Q58
Name of the crypto-asset Ripple XRP
Consensus Mechanism Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple. Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security. Core Components 1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network’s security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security. 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security. 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network. 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB. 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network’s security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance. 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently. Klaytn employs a modified Istanbul Byzantine Fault Tolerance (IBFT) consensus algorithm, a variant of Proof of Authority (PoA), enabling high performance and immediate transaction finality. Core Components of Klaytn’s Consensus: 1. Modified IBFT Algorithm: Immediate Transaction Finality: Klaytn’s IBFT algorithm ensures that once a block is validated, it is immediately final and cannot be reversed. This guarantees that transactions are quickly settled, providing a secure and efficient user experience. 2. Klaytn Governance Council: Council-Driven Governance: The Klaytn network is governed by the Klaytn Governance Council, a consortium of global organizations responsible for selecting and maintaining Consensus Nodes (CNs). This council-based governance model balances decentralization with performance and ensures transparency in decision-making. Two-Thirds Majority for Finalization: For a block to be finalized, it must receive signatures from more than two-thirds of the council members, ensuring broad consensus and network security. 3. Three-Tiered Node Architecture: Consensus Nodes (CNs): The selected validators responsible for producing and validating blocks. CNs are at the core of the network’s security and stability. Proxy Nodes (PNs): Act as intermediaries, relaying data between CNs and the broader network, which helps distribute network traffic and improve accessibility. Endpoint Nodes (ENs): Interface directly with end-users, facilitating transactions, executing smart contracts, and serving as user access points to the Klaytn network. The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of Stake (PoS) as it doesn't rely on mining or staking but instead leverages trusted validators in a Federated Byzantine Agreement (FBA) model. Core Concepts: 1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate transactions and propose new ledger updates. Each node maintains a list of trusted validators known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a node's UNL agree on the validity of a transaction or block. This ensures high levels of security and decentralization. 2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains transaction data, and validators ensure the validity and proper ordering of these transactions. Consensus Process: 1. Proposal Phase: Validators propose new transactions to be added to the ledger. 2. Validation Phase: Validators vote on proposed transactions by comparing them to their UNL. Consensus is achieved when 80% of validators agree. 3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making them irreversible and final.
Incentive Mechanisms and Applicable Fees Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple. Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators. Incentive Mechanisms 1. Validators: Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards. Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks. 2. Delegators: Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks. Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network’s security and decentralization by choosing reliable validators. 3. Candidates: Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience. 4. Economic Security: Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network. Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets. Fees on the Binance Smart Chain 5. Transaction Fees: Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators. Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet. 6. Block Rewards: Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions. 7. Cross-Chain Fees: Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience. 8. Smart Contract Fees: Deployment and Execution Costs: Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform. Klaytn’s incentive structure includes block rewards and transaction fees distributed to Consensus Nodes (CNs) and various network funds, fostering network security, sustainability, and community development. Incentive Mechanisms: 1. Rewards for Consensus Nodes (CNs): Fixed Block Rewards: CNs earn fixed rewards in KLAY tokens for validating and producing blocks. This predictable income incentivizes CNs to maintain active participation and secure the network. Transaction Fees: Users pay transaction fees in KLAY tokens, which are collected by the network and distributed among the CNs as additional rewards, further supporting network security and stability. 2. Block Reward Distribution: Governance Council (GC) Reward: GC Block Proposer Reward: 10% of the block reward goes to the specific CN that proposed the block, incentivizing continuous active participation. GC Staking Award: 40% of the block reward is distributed among all Governance Council members who stake KLAY, promoting network security by rewarding staked tokens. Klaytn Community Fund (KCF): 30% of each block reward is allocated to the KCF to support community development, dApp creation, and overall ecosystem growth. Klaytn Foundation Fund (KFF): 20% of the block reward goes to the KFF, providing resources for long-term network sustainability and future development initiatives. 3. Transaction Fees: User Fees for Network Interaction: Users pay fees in KLAY based on gas usage and gas price for transactions. These fees are then distributed to CNs, incentivizing efficient transaction processing and active participation. Applicable Fees: Transaction Fees: Transaction fees on Klaytn are paid in KLAY and calculated based on gas consumption. These fees support network maintenance by compensating validators and fostering economic sustainability. The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm (RPCA). Here's a breakdown of the incentives and fees: Incentive Mechanisms to Secure Transactions: 1. Validators: Validators on the Ripple network are not directly compensated with rewards like in PoW/PoS models. Instead, they are incentivized by the utility and stability of the network, particularly financial institutions that benefit from Ripple's efficiency in cross-border payments. 2. No Mining: Since Ripple does not use mining, it eliminates the need for energy-intensive computations, contributing to fast transaction speeds and scalability. Fees on the Ripple XRP Blockchain: 1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as "drops") for each transaction. The purpose of these fees is to prevent network spam and overload. 2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed from circulation. This reduces the overall supply of XRP over time, contributing to potential long-term value stability.
Beginning of the period 2024-06-09
End of the period 2025-06-09
Energy consumption 299617.16938 (kWh/a)
Energy consumption resources and methodologies The energy consumption of this asset is aggregated across multiple components: For the calculation of energy consumptions, the so called “bottom-up” approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, klaytn is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation.
Renewable energy consumption 27.719941146
Energy intensity 0.00001 (kWh)
Scope 1 DLT GHG emissions - Controlled 0.00000 (tCO2e/a)
Scope 2 DLT GHG emissions - Purchased 100.37261 (tCO2e/a)
GHG intensity 0.00000 (kgCO2e)
Key energy sources and methodologies To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Share of electricity generated by renewables – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables
Key GHG sources and methodologies To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Carbon intensity of electricity generation – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0
.cm-esg-accordion-container { font-family: "SF Pro Text", "Segoe UI", -apple-system, BlinkMacSystemFont, Roboto, Oxygen, Ubuntu, Cantarell, sans-serif; max-width: 100%; margin: 20px 0; border-radius: 8px; overflow: hidden; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); background-color: #ffffff; } .cm-esg-accordion-item { border: 1px solid #e6e9ec; } .cm-esg-accordion-header { padding: 15px 20px; display: flex; justify-content: space-between; align-items: center; background-color: #f5f7fa; cursor: pointer; user-select: none; border-bottom: 1px solid #e6e9ec; } .cm-esg-trigger { font-size: 16px; font-weight: 600; color: #0090d8; flex-grow: 1; } .cm-pdf-button { background-color: #0090d8; color: white; border: none; border-radius: 20px; padding: 6px 15px; font-size: 14px; font-weight: 500; cursor: pointer; margin-right: 15px; transition: background-color 0.2s; } .cm-pdf-button:hover { background-color: #0076b3; } .cm-esg-icon { font-size: 20px; color: #0090d8; transition: transform 0.3s ease; width: 20px; text-align: center; } .cm-esg-accordion-preview { padding: 12px 20px; background-color: #f0f8ff; border-bottom: 1px solid #e6e9ec; font-size: 14px; color: #4a5568; } .cm-esg-accordion-body { max-height: 0; overflow: hidden; transition: max-height 0.4s ease; } .cm-esg-accordion-item.active .cm-esg-accordion-body { max-height: 10000px; } .cm-esg-accordion-item.active .cm-esg-icon { transform: rotate(45deg); } .cm-esg-content { padding: 20px; } .cm-esg-intro { margin-bottom: 24px; line-height: 1.6; color: #4a5568; font-size: 14px; } .cm-esg-table-container { overflow-x: auto; } .cm-esg-table { width: 100%; border-collapse: collapse; font-size: 14px; } .cm-esg-table td { padding: 12px 16px; border-bottom: 1px solid #e6e9ec; vertical-align: top; line-height: 1.5; } .cm-esg-table tr td:first-child { width: 30%; min-width: 220px; font-weight: 600; color: #2d3748; background-color: #f8fafc; } .cm-esg-highlight td { background-color: #e6f7ff !important; } @media (max-width: 768px) { .cm-esg-table td { padding: 10px; } .cm-esg-table tr td:first-child { min-width: 180px; } .cm-esg-accordion-header { padding: 12px 15px; } .cm-pdf-button { padding: 5px 10px; font-size: 12px; } } document.addEventListener('DOMContentLoaded', function() { const accordionItems = document.querySelectorAll('.cm-esg-accordion-item'); // Toggle accordion on header click accordionItems.forEach(item => { const header = item.querySelector('.cm-esg-accordion-header'); const pdfButton = item.querySelector('.cm-pdf-button'); header.addEventListener('click', function(e) { if (e.target !== pdfButton) { item.classList.toggle('active'); } }); // Handle PDF button click if (pdfButton) { pdfButton.addEventListener('click', function(e) { e.stopPropagation(); const pdfUrl = this.getAttribute('data-pdf-url'); if (pdfUrl) { window.open(pdfUrl, '_blank'); } }); } }); });

Share on

Facebook
Twitter
LinkedIn
Telegram
WhatsApp

 

Tilaa uutiskirjeemme
Haluatko kuulla ensimmäisten joukossa tuoteuutuuksistamme, saada super hyper erikoistarjouksia sekä oppia kryptovaluuttasektorista lisää eksklusiivisten markkinaraporttiemme kautta? Haluaisimme lähettää sinulle sähköpostia silloin ja tällöin – ei kuitenkaan liian usein – eli jos haluat päästä etuihin kiinni, täytä tietosi alapuolelle. Pysytään yhteyksissä! Oletko jo Coinmotionin käyttäjä? Voit muuttaa tilaustasi myös tilin asetuksissa.
Tilaa uutiskirjeemme täyttämällä tietosi
Lisätietoja tietojen käsittelystä löydät tietosuojalausekkeestamme
Suscríbase al boletín de noticias
¿Quiere ser el primero en enterarse de nuestras novedades, recibir consejos y aprender más sobre el sector de las criptomonedas a través de informes exclusivos de mercado? Nos gustaría enviarle un email cada cierto tiempo. Para ello, es necesario cumplimentar los datos que hay a continuación.
¿Ya tiene cuenta? Puede gestionar su suscripción a través de la configuración de la cuenta.
Cumplimente sus datos aquí
Responsable del fichero: Coinmotion Oy. Finalidad: envío de información sobre productos y servicios propios al suscrito. Legitimación: consentimiento. Destinatarios: No se comunicarán los datos a terceros. Derechos: acceder, rectificar y suprimir los datos, así como otros derechos, como se explica en la información adicional. Puede consultar información adicional y detallada en nuestra Política de Privacidad.
Subscribe to Coinmotion Newsletter
Would you like to be the first one to hear about our product updates, receive super hyper special offers and learn more about cryptocurrencies through our exclusive market reports? We are happy to send you an email every now and then – not too often – so please fill your information below. Let’s stay in touch! Are you already a Coinmotion user? You can also manage your subscription via account settings.
Subscribe now by filling your details here
Responsible for the file: Coinmotion Oy. Purpose: sending information about own products and services to the undersigned. Legitimation: consent. Recipients: The data will not be communicated to third parties. Rights: access, rectify and delete data, as well as other rights, as explained in the additional information. You can consult additional and detailed information in our Privacy Policy